抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

Python的Scanpy包和Seurat包一样,是单细胞数据处理的利器,其中,Scanpy中有一种堆积的小提琴图,可以很好的展示marker的表达情况,但是在Seurat中并没有内置命令。因此,我自己尝试提取数据并用ggplot2包来画该图。

首先来展示以下画图的成果,如图

单细胞数据数据量很大,加重了分析的负担,但只要掌握好的方法和工具,就可以无往而不利。今年要说的这个如题,是因为在区分亚类的时候,提取了大类型并调整分辨率重新聚类计算的亚类。针对这种情况,该如何实现呢?

网上很多教程都在讲Y叔的clusterprofile富集分析的教程,但是查阅了官方文档后才知道,这个包真的不仅仅只有这个功能,其他功能也很强大。

文章已经过时,请去官网查阅相关文档

本教程介绍了Kang等人(2017)的两组PBMC的对齐方式。在该实验中,将PBMC分为刺激组和对照组,并用干扰素β治疗刺激组。对干扰素的反应引起细胞类型特异性基因表达的变化,这使得对所有数据进行联合分析变得困难,并且细胞按刺激条件和细胞类型聚类。在这里,我们证明了我们的整合策略,如Stuart和Butler等人(2018年)所述,用于执行整合分析以促进常见细胞类型的鉴定并进行比较分析。尽管此示例演示了两个数据集(条件)的集成,但这些方法已扩展到多个数据集。这个工作流程提供了整合四个胰岛数据集的示例。

文章已经过时,请去官网查阅相关文档

下面演示了一些与Seurat对象进行交互的有用功能。出于演示目的,我们将使用在第一个指导教程中创建的2700 PBMC对象。您可以在此处下载预先计算的对象。为了模拟有两个重复的情况,将一半命名为“rep1”,另一半命名为”rep2”

文章已经过时,请去官网查阅相关文档

简介

在发育过程中,细胞对刺激作出反应,并在整个生命过程中,从一种功能“状态”过渡到另一种功能“状态”。不同状态的细胞表达不同的基因,产生蛋白质和代谢物的动态重复序列,从而完成它们的工作。当细胞在状态之间移动时,它们经历一个转录重组的过程,一些基因被沉默,另一些基因被激活。这些瞬时状态通常很难描述,因为在更稳定的端点状态之间纯化细胞可能是困难的或不可能的。单细胞RNA-Seq可以使您在不需要纯化的情况下看到这些状态。然而,要做到这一点,我们必须确定每个cell在可能的状态范围内的位置。

文章已经过时,请去官网查阅相关文档

摘要

一文介绍单细胞测序生物信息分析完整流程,这可能是最新也是最全的流程