如题,官方已经提供了一个R的版本createGCcontentFile.R ,但是根据代码就能看出这个版本非常占内存了,首先要把基因组整个序列都load入内存中去,每次计算出的矫正数据也是储存dataframe中。为了降低内存占用,也为了提高计算速度,我写了一个julia版本的。代码如下:
如题,官方已经提供了一个R的版本createGCcontentFile.R ,但是根据代码就能看出这个版本非常占内存了,首先要把基因组整个序列都load入内存中去,每次计算出的矫正数据也是储存dataframe中。为了降低内存占用,也为了提高计算速度,我写了一个julia版本的。代码如下:
众所周知,计算相关性非常的简单,因为R
语言中有函数cor.test()
,该函数可以计算多种方法的相关性检验,返回相关性,Pvalue等检验值,但是这个函数在Julia
中并不存在,让Julia作为一门科学计算语言显得并不完美。
单细胞数据数据量很大,加重了分析的负担,但只要掌握好的方法和工具,就可以无往而不利。今年要说的这个如题,是因为在区分亚类的时候,提取了大类型并调整分辨率重新聚类计算的亚类。针对这种情况,该如何实现呢?