在此工作流程中,介绍了 Qiime2 和 R 中 16S rRNA 基因扩增子数据分析的主要步骤。本教程是为哥本哈根大学食品科学系的 MAC 2023 课程准备的。尽管这些步骤是为 Oxford Nanopore Tech (ONT) 测序设计的,但也在 Ilumina 短读长上进行了测试。
在此工作流程中,介绍了 Qiime2 和 R 中 16S rRNA 基因扩增子数据分析的主要步骤。本教程是为哥本哈根大学食品科学系的 MAC 2023 课程准备的。尽管这些步骤是为 Oxford Nanopore Tech (ONT) 测序设计的,但也在 Ilumina 短读长上进行了测试。
上一篇文章我们写了一个Streamlit的程序来全栈的执行我们的任务,但是我们也看到了它的一个缺点:前端界面非异步,UI定制缺乏灵活性。那么,我们接下来尝试采用前后端分离的方式来完成上次的任务。
Python的Scanpy
包和Seurat
包一样,是单细胞数据处理的利器,其中,Scanpy
中有一种堆积的小提琴图,可以很好的展示marker的表达情况,但是在Seurat
中并没有内置命令。因此,我自己尝试提取数据并用ggplot2
包来画该图。
首先来展示以下画图的成果,如图
Bedtools作为基因组研究的 “ 瑞士军刀 ”, 功能强大且易于操作,是生信行业不可多得的好软件。通常对bed区间的注释,我们使用其中“ 求交集 ”的功能(bedtools intersect) ,但是有一个很不方便的地方,我们通常要生成对应的bed文件,再注释完成后还需要用R语言等读入才能继续分析,所以整合度不是很好,本文希望提供R语言的思路来解决该问题。